Publications

66 Photocatalytic CO2 Reduction with Dissolved Carbonates and Near-Zero CO2(aq) by Employing Long-Range Proton Transport

Rito Yanagi, Tianshuo Zhao, Matthew Cheng, Bin Liu, Haoqing Su, Chengxing He, Jake Heinlein, Shomeek Mukhopadhyay, Haiyan Tan, Devan Solanki, and Shu Hu,  JACS, 145, 28, 15381-15392 (2023). 

DOI: 10.1021/jacs.3c03281

65 Multicolor Bipolar Modulation of Titanium-Chromium Oxide Electrochromic Coatings  

Shen, Xin; Yang, Meiqi; He, Chengxing; Zhao, Tianshuo; Solanki, Devan; Yanagi, Rito; Gibbs, Ben; Krishnan, Gouri; Hu, Shu,  ACS Applied Electronic Materials, 5, 3, 1812-1823 (2023). 

DOI: 10.1021/acsaelm.3c00012

64 A general interfacial-energetics-tuning strategy for enhanced artificial photosynthesis  

Tian Liu, Zhenhua Pan, Kosaku Kato, Junie Jhon M. Vequizo, Rito Yanagi, Xiaoshan Zheng, Weilai Yu, Akira Yamakata, Baoliang Chen, Shu Hu, Kenji Katayama, and Chiheng Chu,  Nature Communications13, 7783 (2022).

DOI: 10.1038/s41467-022-35502-z

63 Biocement from the ocean: Hybrid microbial-electrochemical mineralization of CO2

Atsu Kludze †, Devan Solanki †, Marcelo Lejeune, Rito Yanagi, Momoko Ishii, Neera Raychaudhuri, Paul Anastas, Nanette Boyle, Shu Hu,  iScience105156.

DOI: 10.1016/j.isci.2022.105156

62 Hematite photoanodes prepared by particle transfer for photoelectrochemical water splitting

Zhenhua Pan, Rito Yanagi, Tomohiro Higashi, Yuriy Pihosh, Shu Hu, Sustainable Energy Fuels, 2022, 6, 2067-2074.

DOI: 10.1039/D2SE00145D  

61 Tuning Intermediate Bands of Protective Coatings to Reach the Bulk-Recombination Limit of Stable Water-Oxidation GaP Photoanodes

Xin Shen, Tianshuo Zhao, Haoqing Su, Meiqi Yang, Jiaye Chen, Yulin Liu, Rito Yanagi, Devan Solanki, Shu Hu. Advanced Energy Materials, 2022, 2201314.

DOI: 10.1002/aenm.202201314

60 Emerging Dual-Functional 2D transition metal oxides for carbon capture and Utilization: A review

Liuqingqing Yanga, Jake Heinlein, Cheng Hua, Ruixia Gao, Shu Hu, Lisa Pfefferle, Yulian He. Fuel, Volume 324, Part B, 15 September 2022, 124706.

DOI: 10.1016/j.fuel.2022.124706

59 Scalable production of single 2D van der Waals layers through atomic layer deposition: bilayer silica on metal foils and films

Gregory S Hutchings, Xin Shen, Chao Zhou, Petr Dementyev, Daniil Naberezhnyi, Inga Ennen, Andreas Hütten, Nassar Doudin, Jesse H Hsu, Zachary S Fishman, , Udo D Schwarz, Shu Hu, and Eric I Altman. 2D Materials9 021003.

DOI: 10.1088/2053-1583/ac5005

 

58 Charge Separation in Photocatalysts: Mechanisms, Physical Parameters, and Design Principles

R. Yanagi, T. Zhao, D. Solanki, Z. Pan, and S. Hu. ACS Energy Letters, 7, 432–452 (2022).

DOI: 10.1021/acsenergylett.1c02516


57 Comprehensive Evaluation for Protective Coatings: Optical, Electrical, Photoelectrochemical, and Spectroscopic Characterization

X. Shen, R. Yanagi, D. Solanki, H. Su, Z. Li, C-X Xiang, S. Hu. Frontiers in Energy Research, 9:799776 (2021).

DOI: 10.3389/fenrg.2021.799776 

56 Selective Fluoride Transport in Subnanometer TiO2 Pores

Xuechen Zhou, Mohammad Heiranian, Meiqi Yang, Razi Epsztein, Kai Gong, Claire E. White, Shu Hu, Jae-Hong Kim, and Menachem Elimelech. ACS Nano. 15 (10), 16828-16838 (2021).

DOI: 10.1021/acsnano.1c07210

55 Microstructural Origin of Selective Water Oxidation to Hydrogen Peroxide at Low Overpotentials: A Study on Mn-alloyed TiO2

Jiahui Li ‡ ,  Devan Solanki‡ ,  Qianhong Zhu, Xin Shen, Grace Callander, Jaehong Kim, Yao Gang Li, Hongzhi Wang, Shu Hu. Journal of Materials Chemistry A. 9, 18498-18505 (2021).

DOI: 10.1039/D1TA05451A (‡equal contribution)  

54 Selective hydrogen peroxide conversion tailored by surface, interface, and device engineering          

Junying Tang,Tianshuo Zhao, Devan Solanki, Xianbing Miao, Weiguo Zhou, Shu Hu. Joule, 5 ( 6), 1432-1461 (2021). 

53  A coating strategy to achieve effective local charge separation for photocatalytic coevolution

Tianshuo Zhao, Rito Yanagi, Yijie Xu, Yulian He, Yuqi Song, Meiqi Yang, Shu Hu. PNAS. 118.7 (2021). 

52 Defect tolerant TiO2-coated and discretized photoanodes for >600 hours stable photoelectrochemical water oxidation

X. Shen, M. Yao, K Sun, T. Zhao, Y. He, C. Chi, C. Zhou, P. Dapkus, N. S. Lewis and S. Hu. ACS Energy Letters, 6, 193–200 (2021). 

DOI: 10.1021/acsenergylett.0c02521

51 In situ identification of reaction intermediates and mechanistic understandings of methane oxidation over hematite: a combined experimental and theoretical study 

Y. He, F. Guo, K. Yang, J. Heinlein, S. Bamonte, J. Fee, S. Hu, S. Suib, G. Haller, V. Batista, L. Pfefferle, Journal of American Chemical Society, 142, 40, 17119 30 (2020).

DOI: 10.1021/jacs.0c07179

50 Stable CDTE photoanodes with energetics matching to coating intermediate band 

Xiangyan Chen, Xin Shen, Shaohua Shen, Matthew O. Reese, and Shu Hu, ACS Energy Letters, 5, 1865 (2020).

DOI: 10.1021/acsenergylett.0c00603

49 RGB arrays for micro-led applications using nanoporous gan embedded with quantum dots

Jin-Ho Kang, Bingjun Li, Tianshuo Zhao, Muhammad Ali Johar, Chien-Chung Lin, Yen-Hsiang Fang, Wei-Hung Kuo, Kai-Ling Liang, Shu Hu, Sang-Wan Ryu, and Jung Han, ACS Applied Materials & Interfaces , 12, 27, 30890 30895 (2020).

DOI: 10.1021/acsami.0c00839

48 Cathodic hydrogen peroxide electrosynthesis using anthraquinone modified carbon nitride on gas diffusion electrode

Qianhong Zhu, Zhenhua Pan, Shu Hu, Jae-Hong Kim, ACS Appl. Energy Mater. 2019, 2 (11), 7972-7979.

DOI: 10.1021/acsaem.9b01445
 

47 Mutually-dependent kinetics and energetics of photocatalyst/co-catalyst/two-redox liquid junctions

Zhenhua Pan, Rito Yanagi, Qian Wang, Xin Shen, Qianhong Zhu, Yudong Xue, Jason Rohr, Takashi Hisatomi, Kazunari Domen, Shu Hu, Energy Environ. Sci., 2020, 13, 162-173.

DOI: 10.1039/C9EE02910A

46 Characterization of electronic transport through amorphous tio2 produced by atomic layer deposition

Paul Nunez, Matthias H Richter, Brandon D Piercy, Christopher W Roske, Miguel Cabán-Acevedo, Mark D Losego, Steven J Konezny, David J Fermin, Shu Hu, Bruce S Brunschwig, Nathan S Lewis, J. Phys. Chem. C, 2019, 123, 33, 20116-20129

DOI: 10.1021/acs.jpcc.9b04434
 

45 Hydrogen evolution activity tuning via two-dimensional electron accumulation at buried interfaces

Yudong Xue, Zachary S Fishman, Yunting Wang, Zhenhua Pan, Xin Shen, Rito Yanagi, Gregory S Hutchings, Mingzhao Liu, Shili Zheng, Yi Zhang, Eric I Altman, Shu Hu, J. Mater. Chem. A, 2019, 7, 20696-20705

DOI: 10.1039/C9TA07123G
 

44 Catalytic manganese oxide nanostructures for the reverse water gas shift reactions

Yulian He, Ke R Yang, Ziwei Yu, Zachary S Fishman, Laura A Achola, Zachary M Tobin, Jake A Heinlein, Shu Hu, Steven L Suib, Victor S Batista, Lisa D Pfefferle, Nanoscale, 2019, 11, 16677-16688.

DOI: 10.1039/C9NR06078B
 

43 Unveiling the interfacial effects for enhanced hydrogen evolution reaction on mos2/wte2 hybrid structures

Yu Zhou,  Joshua V. Pondick,  Jose Luis Silva,  John M. Woods,  David J. Hynek,  Grace Matthews,  Xin Shen, Qingliang, Feng,  Wen Liu,  Zhixing Lu,  Zhixiu Liang,  Barbara Brena,  Zhao Cai,  Min Wu,  Liying Jiao,  Shu Hu,  Hailiang Wang,  Carlos Moyses Araujo,  Judy J. Cha, Small, 2019, 15(19), 1900078. 

DOI: 10.1002/smll.201900078  

42 Elucidating charge separation in particulate photocatalysts using nearly-intrinsic semiconductors with small asymmetric band bending

Zhenhua Pan, Jason A. Röhr, Zuyang Ye, Zachary S. Fishman, Qianhong Zhu, Xin Shen, S. Hu Shu Hu, Sustainable Energy & Fuels, 2019,3, 850-864.

DOI: 10.1039/C9SE00036D
 

41 Membrane-less photoelectrochemical devices for h2o2 production enabled by selective water oxidation to h2o2 (cover article)  

Shu Hu, Sustainable Energy & Fuels, 3, 101 – 114 (2019).

DOI: 10.1039/C8SE00329G 

40 Electronic tuning of metal nanoparticles for highly efficient photocatalytic hydrogen peroxide production 

Chiheng Chu, Dahong Huang, Qianhong Zhu, Eli Stavitski, Jacob Spies, Zhenhua Pan, Jing Mao, Huolin Xin, Charles Schmuttenmaer, Shu Hu, and Jae-Hong Kim, ACS Catalysis, 9, 626–631 (2019).

DOI: 10.1021/acscatal.8b03738

39 Controlled tio2 growth on reverse osmosis and nanofiltration membranes by atomic layer deposition: mechanisms and potential applications 

Xuechen Zhou, Yang-Ying Zhao, Sang-Ryoung Kim, Menachem Elimelech, Shu Hu, and Jae-Hong Kim, Environmental Science & Technology, 52(24), 14311 – 14320 (2018).

DOI: 10.1021/acs.est.8b03967

38 Energy-conversion properties of si/gaas mesowires containing fewer threading dislocations 

Jason A. Röhr, Georges Siddiqi, Sheng Li, Christopher T. Chen, Shaul Aloni, and Shu Hu, Proceedings of the 45th IEEE Photovoltaic Specialists Conference and IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), 0243 – 0248 (2018).

DOI: 10.1109/PVSC.2018.8547681

37 High-performance capacitive deionization via manganese oxide-coated, vertically aligned carbon nanotubes 

Wenbo Shi, Xuechen Zhou, Jinyang Li, Eric R. Meshot, André D. Taylor, Shu Hu, Jae-Hong Kim, Menachem Elimelech, and Desiree L. Plata, Environmental Science & Technology Letters, 5, 11, 692–700 (2018).

DOI: 10.1021/acs.estlett.8b00397
 

       36 Tunable nano-interfaces between mnox and layered double hydroxides boost             oxygen evolving electrocatalysis

Yudong Xue, Zachary S. Fishman, Jason A. Röhr, Zhenhua Pan, Yunting Wang, Chunhui Zhang, Shili Zheng, Yi Zhang  and  Shu Hu, Journal of Materials Chemistry A, 6, 21918-21926 (2018). Emerging Investigators
 

35 Stable water oxidation in acid using manganese-modified tio2 protective coatings

Georges Siddiqi, Zhenya Luo, Yujun Xie, Zhenhua Pan, Qianhong Zhu, Jason A. Röhr, Judy J. Cha, and Shu Hu, ACS Applied Materials & Interfaces, 10, 18805 – 18815 (2018).

34 Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride

Hyoung-il Kim, Yeoseon Choi, Shu Hu, Wonyong Choi, Jae-Hong Kim, Applied Catalysis B: Environmental, 229, 121-129 (2018).

      33 Semiconductors for Photocatalysis

G. Siddiqi, Z. Pan, S. Hu, “Chapter 3: III-V Semiconductor Photoelectrodes” in Semiconductors for Photocatalysis, Book Series: Semiconductors and Semimetals, Elsevier (2017).

32 Electrical, Photoelectrochemical and Photoelectron Spectroscopic Investigation of the ​Interfacial Transport and Energetics ​of Amorphous TiO2/Si Heterojunctions

S. Hu, M. H. Richter, M. L. Lichterman, J. Beardslee, T. Mayer, B. S. Brunschwig, N. S. Lewis, Journal of Physical Chemistry C, 120, 3117 – 3129 (2016).

31 Modeling, s​imulation, and implementation of solar-driven water-splitting devices

C. Xiang, A. Z. Weber, S. Ardo, A. Berger, Y.-K. Chen, R. Cordian, K. T. Fountaine, S. Haussener, S. Hu, R. Liu, N. S. Lewis, M. A. Modestino, M. M. Shaner, M .R. Singh, J. C. Stevens, K. Sun, K. Walczak, Angewandte Chemie International Edition, 55, 12974 – 12988 (2016) (invited review).
 

       30 Protection of inorganic sem​iconductors for                                                                                              sustained,efficient photoelectrochemical water oxidation

M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, N. S. Lewis, Catalysis Today, 262, 11 – 23 (2016).
 

29 Thin-film materials for the p​rotection of semiconducting photoelectrodes in solar-fuel generators

S. Hu, N. S. Lewis, J. W. Ager, J. McKone, N. C. Strandwitz, Journal of Physical Chemistry C, 119, 24201 – 24228 (2015) (invited review).

 

28 A monolithically integrated, intrinsically safe, 10% efficient, sola​r-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem iii–v light absorbers protected by amorphous tio2 films

E. Verlage, S. Hu, R. Liu, R. Jones, K. Sun, C.X. Xiang, N. S. Lewis, H. A. Atwater, Energy & Environmental Science8, 3166 – 3172 (2015).

27 Particle suspension reactors and materials for solar-driven water splitting

D. Fabian, S. Hu, N. Singh, F. A. Houle, T. Hisatomi, K. Domen, F. Osterloh, S. Ardo, Energy & Environmental Science, 8, 2825 – 2850 (2015) (invited review).

26 Direct observation of the energetics at a semiconductor/liquid junction by operando x‑ray photoelectron spectroscopy

M. F. Lichterman, S. Hu, M. H. Richter, E. J. Crumlin, M. Favaro, W. Drisdell, T. Mayer, B. S. Brunschwig, N. S. Lewis, H.-J. Lewerenz, Energy & Environmental Science8, 2409 – 2416 (2015).

 

25 The influence of tio2 crystal structure on the photoelectrochemical behavior of stabilized n-si/tio2/ni photoanodes f​or water oxidation

M. T. McDowell, M. F. Lichterman, A. I. Carim, R. Liu, S. Hu, B. S. Brunschwig, N. S. Lewis, ACS Applied Materials & Interfaces, 7, 15189 – 15199 (2015).
 

24 A sensitivity analysis to ass​ess the relative importance of improvements in electrocatalysts, light absorbers, and system geometry on the efficiency of solar-fuels generators

Y. Chen, S. Hu, C. X. Xiang, N. S. Lewis, Energy & Environmental Science, 8, 876 – 886 (2015).

 

23 Stabili​zation of si&nbsp microwire arrays for solar-driven h2o oxidation to o2(g) in 1.0 m koh(aq) using conformal coatings of amorphous tio2

M. R. Shaner, S. Hu, K. Sun, N. S. Lewis, Energy & Environmental Science, 8, 203 – 207 (2015).

 

22 Stable solar-driven water oxidation to o2(g) by ni-oxide coated silicon photoanodes

K. Sun, M. T. McDowell, A. C. Nielander, S. Hu, M. R. Shaner, F. Yang, B. S. Brunschwig, N. S. Lewis, J. Phys. Chem. Lett., 6, 592 – 598 (2015).

 

21 Stab​ilization of n-cadmium telluride photoanodes for water oxidation to o2(g) in aqueous alkaline electrolytes using amorphous tio2 films formed by atomic-layer deposition

M. F. Lichterman, A. I. Carim, M. T. McDowell, S. Hu, H. B. Gray, B. S. Brunschwig, N. S. Lewis, Energy & Environmental Science, 7, 3334 – 3337 (2014).

 

20 Impro​ved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin  tio2/ni coatings

M. T. McDowell, M. F. Lichterman, J. M. Spurgeon, S. Hu, I. D. Sharp, B. S. Brunschwig, N. S. Lewis, J. Phys. Chem. C, 118, 19618 – 19624 (2014).

19 Amorp​hous tio2 coatings stabilize si, gaas and gap photoanodes for efficient water oxidation

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, N. S. Lewis, Science, 344, 1005 – 1009 (2014).

18 Modeling the performance of an integrated photoelectrolysis​ system with 10 × solar concentrators

Y. -K. Chen, C. -X. Xiang, S. Hu, and N. S. Lewis, J. Electrochem. Soc, 10, F1101 – F1110 (2014).

 

17 Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes

S. Hu, C.-Y. Chi, K. Fountaine, M. Q. Yao, H. A. Atwater, P. D. Dapkus, N. S. Lewis, and C. Zhou, Energy & Environmental Science, 6 (6), 1879 – 1890 (2013).

 

16 Twin-free gaas nanosheets by selective area growth: implications for defect-free nanostructures

C.-Y. Chi, T.-W. Yeh, S. Hu, and P. D. Dapkus, Nano Letters, 13 (6), 2506 – 2515 (2013).

 

15 An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting system​

S. Hu, C. X. Xiang, S. Haussener, A. Berger, and N. S. Lewis, Energy & Environmental Science, 6 (10), 2984 – 2993 (2013).

 

14 Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splittin​g systems

S. Haussener, S. Hu, C. X. Xiang, A. Z. Weber, and N. S. Lewis, Energy & Environmental Science, 6 (12), 3605 – 3618 (2013).

 

13 Undoped ge core-si(ge) shell nanowires: synthesis, local composition and strain characterization

S. Hu, I. A. Goldthorpe, A. F. Marshall, and P. C. McIntyre, ECS Transactions50 (9), 635 – 643 (2013)
 

12 Thermal s​tability and surface passivation of ge nanowires coated by epitaxial sige shells

S. Hu, Y. Kawamura, K. C.-Y. Huang, Y. Li, A. F. Marshall, K. M. Itoh, M. L. Brongersma, and P. C. McIntyre, Nano Letters12 (3), 1385-1391 (2012).

 

11 Directed synthesis of germanium oxide nanowires by vapor–liquid–solid oxidation

M. Gunji, S. V. Thombare, S. Hu, and P. C. McIntyre, Nanotechnology23 (38), 385603 (2012).
 

10 Direc​t-gap photoluminescence from germanium nanowires

Y. Kawamura, K. C.-Y. Huang, S. V. Thombare, S. Hu, M. Gunji, T. Ishikawa, M. L. Brongersma, K. M. Itoh, and P. C. McIntyre, Physics Review B86, 035306 (2012).
 

9 Design​ and growth of iii-v nanowire solar cell arrays on low cost substrates

S. Hu, A. Gu, Y. Huo, S. Thombare, E. Pickett, J. Yan, T. Sarmiento, D. Liang, S. Li, A. Lin, Z. Yu, M. Riazia, S. Fan, P. C. McIntyre, and J. Harris, Proceedings of the 35th IEEE Photovoltaic Specialists Conference, 002034-7 (2010).

 

8 Faceting and disorder in nanowire solar cell arrays

E. Pickett, A. Gu, Y. Huo, E. Garnett, S. Hu, T. Sarmiento, S. Thombare, D. Liang, S. Li, Y. Cui, M. McGehee, P. C. McIntyre, and J. Harris, Proceedings of the 35th IEEE Photovoltaic Specialists Conference, 001848-53 (2010).
 

7 Nu​cleation and growth kinetics of germanium islands during layer exchange metal-induced crystallization

S. Hu and P. C. McIntyre, Journal of Applied Physics111, 044908 (2012).
 

6 Interface-​controlled low-temperature metal-induced crystallization of germanium films on amorphous substrates

S. Hu, A. F. Marshall, and P. C. McIntyre, Applied Physics Letters97, 082104 (2010).

 

5 Group iv semiconductor nanowire arrays: epitaxy in different contexts

P. C. McIntyre, H. Adhikari, I. A. Goldthorpe, S. Hu, P. Leu, A. F. Marshall, and C.E.D. Chidsey, Semiconductor Science and Technology25, 024016 (2010).

4 Single-crystal germanium layers grown on silicon by nanowire seeding

S. Hu, P. W. Leu, A. F. Marshall, and P. C. McIntyre, Nature Nanotechnology4, 649-653 (2009).

3 An energy stabilizing system for electron energy-loss spectrometers in transmission electron microscopy

Z. Wang, S. Hu, C. Xu, D. McMullan, and J. Yuan, Physics Procedia1, p.521-527(2008).

 

2 A hybrid electron energy loss spectrometer with simultaneous serial and parallel detection

J. Yuan, Z.W. Wang, S. Hu, and L. Xie, 14th European Microscopy Congress1, 67-68 (2008).
 

1 An energy stabilized post-column electron energy-loss spectrometer for transmission electron microscopy

Z. Wang, S. Hu, C. Xu, D. McMullan, and J. Yuan, Journal of Physics: Conference Series126, 012094 (2008).