66 Photocatalytic CO2 Reduction with Dissolved Carbonates and Near-Zero CO2(aq) by Employing Long-Range Proton Transport
Rito Yanagi, Tianshuo Zhao, Matthew Cheng, Bin Liu, Haoqing Su, Chengxing He, Jake Heinlein, Shomeek Mukhopadhyay, Haiyan Tan, Devan Solanki, and Shu Hu, JACS, 145, 28, 15381-15392 (2023).
DOI: 10.1021/jacs.3c03281
65 Multicolor Bipolar Modulation of Titanium-Chromium Oxide Electrochromic Coatings
Shen, Xin; Yang, Meiqi; He, Chengxing; Zhao, Tianshuo; Solanki, Devan; Yanagi, Rito; Gibbs, Ben; Krishnan, Gouri; Hu, Shu, ACS Applied Electronic Materials, 5, 3, 1812-1823 (2023).
DOI: 10.1021/acsaelm.3c00012
64 A general interfacial-energetics-tuning strategy for enhanced artificial photosynthesis
Tian Liu, Zhenhua Pan, Kosaku Kato, Junie Jhon M. Vequizo, Rito Yanagi, Xiaoshan Zheng, Weilai Yu, Akira Yamakata, Baoliang Chen, Shu Hu, Kenji Katayama, and Chiheng Chu, Nature Communications, 13, 7783 (2022).
DOI: 10.1038/s41467-022-35502-z
63 Biocement from the ocean: Hybrid microbial-electrochemical mineralization of CO2
Atsu Kludze †, Devan Solanki †, Marcelo Lejeune, Rito Yanagi, Momoko Ishii, Neera Raychaudhuri, Paul Anastas, Nanette Boyle, Shu Hu, iScience, 105156.
DOI: 10.1016/j.isci.2022.105156
62 Hematite photoanodes prepared by particle transfer for photoelectrochemical water splitting
Zhenhua Pan, Rito Yanagi, Tomohiro Higashi, Yuriy Pihosh, Shu Hu, Sustainable Energy Fuels, 2022, 6, 2067-2074.
DOI: 10.1039/D2SE00145D
61 Tuning Intermediate Bands of Protective Coatings to Reach the Bulk-Recombination Limit of Stable Water-Oxidation GaP Photoanodes
Xin Shen, Tianshuo Zhao, Haoqing Su, Meiqi Yang, Jiaye Chen, Yulin Liu, Rito Yanagi, Devan Solanki, Shu Hu. Advanced Energy Materials, 2022, 2201314.
DOI: 10.1002/aenm.202201314
60 Emerging Dual-Functional 2D transition metal oxides for carbon capture and Utilization: A review
Liuqingqing Yanga, Jake Heinlein, Cheng Hua, Ruixia Gao, Shu Hu, Lisa Pfefferle, Yulian He. Fuel, Volume 324, Part B, 15 September 2022, 124706.
DOI: 10.1016/j.fuel.2022.124706
59 Scalable production of single 2D van der Waals layers through atomic layer deposition: bilayer silica on metal foils and films
Gregory S Hutchings, Xin Shen, Chao Zhou, Petr Dementyev, Daniil Naberezhnyi, Inga Ennen, Andreas Hütten, Nassar Doudin, Jesse H Hsu, Zachary S Fishman, , Udo D Schwarz, Shu Hu, and Eric I Altman. 2D Materials, 9 021003.
DOI: 10.1088/2053-1583/ac5005
58 Charge Separation in Photocatalysts: Mechanisms, Physical Parameters, and Design Principles
R. Yanagi, T. Zhao, D. Solanki, Z. Pan, and S. Hu. ACS Energy Letters, 7, 432–452 (2022).
DOI: 10.1021/acsenergylett.1c02516
57 Comprehensive Evaluation for Protective Coatings: Optical, Electrical, Photoelectrochemical, and Spectroscopic Characterization
X. Shen, R. Yanagi, D. Solanki, H. Su, Z. Li, C-X Xiang, S. Hu. Frontiers in Energy Research, 9:799776 (2021).
DOI: 10.3389/fenrg.2021.799776
56 Selective Fluoride Transport in Subnanometer TiO2 Pores
Xuechen Zhou, Mohammad Heiranian, Meiqi Yang, Razi Epsztein, Kai Gong, Claire E. White, Shu Hu, Jae-Hong Kim, and Menachem Elimelech. ACS Nano. 15 (10), 16828-16838 (2021).
DOI: 10.1021/acsnano.1c07210
55 Microstructural Origin of Selective Water Oxidation to Hydrogen Peroxide at Low Overpotentials: A Study on Mn-alloyed TiO2
Jiahui Li ‡ , Devan Solanki‡ , Qianhong Zhu, Xin Shen, Grace Callander, Jaehong Kim, Yao Gang Li, Hongzhi Wang, Shu Hu. Journal of Materials Chemistry A. 9, 18498-18505 (2021).
DOI: 10.1039/D1TA05451A (‡equal contribution)
54 Selective hydrogen peroxide conversion tailored by surface, interface, and device engineering
Junying Tang,Tianshuo Zhao, Devan Solanki, Xianbing Miao, Weiguo Zhou, Shu Hu. Joule, 5 ( 6), 1432-1461 (2021).
53 A coating strategy to achieve effective local charge separation for photocatalytic coevolution
Tianshuo Zhao, Rito Yanagi, Yijie Xu, Yulian He, Yuqi Song, Meiqi Yang, Shu Hu. PNAS. 118.7 (2021).
52 Defect tolerant TiO2-coated and discretized photoanodes for >600 hours stable photoelectrochemical water oxidation
X. Shen, M. Yao, K Sun, T. Zhao, Y. He, C. Chi, C. Zhou, P. Dapkus, N. S. Lewis and S. Hu. ACS Energy Letters, 6, 193–200 (2021).
DOI: 10.1021/acsenergylett.0c02521
51 In situ identification of reaction intermediates and mechanistic understandings of methane oxidation over hematite: a combined experimental and theoretical study
Y. He, F. Guo, K. Yang, J. Heinlein, S. Bamonte, J. Fee, S. Hu, S. Suib, G. Haller, V. Batista, L. Pfefferle, Journal of American Chemical Society, 142, 40, 17119 30 (2020).
DOI: 10.1021/jacs.0c07179
50 Stable CDTE photoanodes with energetics matching to coating intermediate band
Xiangyan Chen, Xin Shen, Shaohua Shen, Matthew O. Reese, and Shu Hu, ACS Energy Letters, 5, 1865 (2020).
DOI: 10.1021/acsenergylett.0c00603
49 RGB arrays for micro-led applications using nanoporous gan embedded with quantum dots
Jin-Ho Kang, Bingjun Li, Tianshuo Zhao, Muhammad Ali Johar, Chien-Chung Lin, Yen-Hsiang Fang, Wei-Hung Kuo, Kai-Ling Liang, Shu Hu, Sang-Wan Ryu, and Jung Han, ACS Applied Materials & Interfaces , 12, 27, 30890 30895 (2020).
DOI: 10.1021/acsami.0c00839
48 Cathodic hydrogen peroxide electrosynthesis using anthraquinone modified carbon nitride on gas diffusion electrode
Qianhong Zhu, Zhenhua Pan, Shu Hu, Jae-Hong Kim, ACS Appl. Energy Mater. 2019, 2 (11), 7972-7979.
DOI: 10.1021/acsaem.9b01445
47 Mutually-dependent kinetics and energetics of photocatalyst/co-catalyst/two-redox liquid junctions
Zhenhua Pan, Rito Yanagi, Qian Wang, Xin Shen, Qianhong Zhu, Yudong Xue, Jason Rohr, Takashi Hisatomi, Kazunari Domen, Shu Hu, Energy Environ. Sci., 2020, 13, 162-173.
DOI: 10.1039/C9EE02910A
46 Characterization of electronic transport through amorphous tio2 produced by atomic layer deposition
Paul Nunez, Matthias H Richter, Brandon D Piercy, Christopher W Roske, Miguel Cabán-Acevedo, Mark D Losego, Steven J Konezny, David J Fermin, Shu Hu, Bruce S Brunschwig, Nathan S Lewis, J. Phys. Chem. C, 2019, 123, 33, 20116-20129
DOI: 10.1021/acs.jpcc.9b04434
45 Hydrogen evolution activity tuning via two-dimensional electron accumulation at buried interfaces
Yudong Xue, Zachary S Fishman, Yunting Wang, Zhenhua Pan, Xin Shen, Rito Yanagi, Gregory S Hutchings, Mingzhao Liu, Shili Zheng, Yi Zhang, Eric I Altman, Shu Hu, J. Mater. Chem. A, 2019, 7, 20696-20705
DOI: 10.1039/C9TA07123G
44 Catalytic manganese oxide nanostructures for the reverse water gas shift reactions
Yulian He, Ke R Yang, Ziwei Yu, Zachary S Fishman, Laura A Achola, Zachary M Tobin, Jake A Heinlein, Shu Hu, Steven L Suib, Victor S Batista, Lisa D Pfefferle, Nanoscale, 2019, 11, 16677-16688.
DOI: 10.1039/C9NR06078B
43 Unveiling the interfacial effects for enhanced hydrogen evolution reaction on mos2/wte2 hybrid structures
Yu Zhou, Joshua V. Pondick, Jose Luis Silva, John M. Woods, David J. Hynek, Grace Matthews, Xin Shen, Qingliang, Feng, Wen Liu, Zhixing Lu, Zhixiu Liang, Barbara Brena, Zhao Cai, Min Wu, Liying Jiao, Shu Hu, Hailiang Wang, Carlos Moyses Araujo, Judy J. Cha, Small, 2019, 15(19), 1900078.
DOI: 10.1002/smll.201900078
42 Elucidating charge separation in particulate photocatalysts using nearly-intrinsic semiconductors with small asymmetric band bending
Zhenhua Pan, Jason A. Röhr, Zuyang Ye, Zachary S. Fishman, Qianhong Zhu, Xin Shen, S. Hu Shu Hu, Sustainable Energy & Fuels, 2019,3, 850-864.
DOI: 10.1039/C9SE00036D
41 Membrane-less photoelectrochemical devices for h2o2 production enabled by selective water oxidation to h2o2 (cover article)
Shu Hu, Sustainable Energy & Fuels, 3, 101 – 114 (2019).
DOI: 10.1039/C8SE00329G
40 Electronic tuning of metal nanoparticles for highly efficient photocatalytic hydrogen peroxide production
Chiheng Chu, Dahong Huang, Qianhong Zhu, Eli Stavitski, Jacob Spies, Zhenhua Pan, Jing Mao, Huolin Xin, Charles Schmuttenmaer, Shu Hu, and Jae-Hong Kim, ACS Catalysis, 9, 626–631 (2019).
DOI: 10.1021/acscatal.8b03738
39 Controlled tio2 growth on reverse osmosis and nanofiltration membranes by atomic layer deposition: mechanisms and potential applications
Xuechen Zhou, Yang-Ying Zhao, Sang-Ryoung Kim, Menachem Elimelech, Shu Hu, and Jae-Hong Kim, Environmental Science & Technology, 52(24), 14311 – 14320 (2018).
DOI: 10.1021/acs.est.8b03967
38 Energy-conversion properties of si/gaas mesowires containing fewer threading dislocations
Jason A. Röhr, Georges Siddiqi, Sheng Li, Christopher T. Chen, Shaul Aloni, and Shu Hu, Proceedings of the 45th IEEE Photovoltaic Specialists Conference and IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), 0243 – 0248 (2018).
DOI: 10.1109/PVSC.2018.8547681
37 High-performance capacitive deionization via manganese oxide-coated, vertically aligned carbon nanotubes
Wenbo Shi, Xuechen Zhou, Jinyang Li, Eric R. Meshot, André D. Taylor, Shu Hu, Jae-Hong Kim, Menachem Elimelech, and Desiree L. Plata, Environmental Science & Technology Letters, 5, 11, 692–700 (2018).
DOI: 10.1021/acs.estlett.8b00397
36 Tunable nano-interfaces between mnox and layered double hydroxides boost oxygen evolving electrocatalysis
Yudong Xue, Zachary S. Fishman, Jason A. Röhr, Zhenhua Pan, Yunting Wang, Chunhui Zhang, Shili Zheng, Yi Zhang and Shu Hu, Journal of Materials Chemistry A, 6, 21918-21926 (2018). Emerging Investigators
35 Stable water oxidation in acid using manganese-modified tio2 protective coatings
Georges Siddiqi, Zhenya Luo, Yujun Xie, Zhenhua Pan, Qianhong Zhu, Jason A. Röhr, Judy J. Cha, and Shu Hu, ACS Applied Materials & Interfaces, 10, 18805 – 18815 (2018).
34 Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride
Hyoung-il Kim, Yeoseon Choi, Shu Hu, Wonyong Choi, Jae-Hong Kim, Applied Catalysis B: Environmental, 229, 121-129 (2018).
33 Semiconductors for Photocatalysis
G. Siddiqi, Z. Pan, S. Hu, “Chapter 3: III-V Semiconductor Photoelectrodes” in Semiconductors for Photocatalysis, Book Series: Semiconductors and Semimetals, Elsevier (2017).
32 Electrical, Photoelectrochemical and Photoelectron Spectroscopic Investigation of the Interfacial Transport and Energetics of Amorphous TiO2/Si Heterojunctions
S. Hu, M. H. Richter, M. L. Lichterman, J. Beardslee, T. Mayer, B. S. Brunschwig, N. S. Lewis, Journal of Physical Chemistry C, 120, 3117 – 3129 (2016).
31 Modeling, simulation, and implementation of solar-driven water-splitting devices
C. Xiang, A. Z. Weber, S. Ardo, A. Berger, Y.-K. Chen, R. Cordian, K. T. Fountaine, S. Haussener, S. Hu, R. Liu, N. S. Lewis, M. A. Modestino, M. M. Shaner, M .R. Singh, J. C. Stevens, K. Sun, K. Walczak, Angewandte Chemie International Edition, 55, 12974 – 12988 (2016) (invited review).
30 Protection of inorganic semiconductors for sustained,efficient photoelectrochemical water oxidation
M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, N. S. Lewis, Catalysis Today, 262, 11 – 23 (2016).
29 Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators
S. Hu, N. S. Lewis, J. W. Ager, J. McKone, N. C. Strandwitz, Journal of Physical Chemistry C, 119, 24201 – 24228 (2015) (invited review).
28 A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem iii–v light absorbers protected by amorphous tio2 films
E. Verlage, S. Hu, R. Liu, R. Jones, K. Sun, C.X. Xiang, N. S. Lewis, H. A. Atwater, Energy & Environmental Science, 8, 3166 – 3172 (2015).
27 Particle suspension reactors and materials for solar-driven water splitting
D. Fabian, S. Hu, N. Singh, F. A. Houle, T. Hisatomi, K. Domen, F. Osterloh, S. Ardo, Energy & Environmental Science, 8, 2825 – 2850 (2015) (invited review).
26 Direct observation of the energetics at a semiconductor/liquid junction by operando x‑ray photoelectron spectroscopy
M. F. Lichterman, S. Hu, M. H. Richter, E. J. Crumlin, M. Favaro, W. Drisdell, T. Mayer, B. S. Brunschwig, N. S. Lewis, H.-J. Lewerenz, Energy & Environmental Science, 8, 2409 – 2416 (2015).
25 The influence of tio2 crystal structure on the photoelectrochemical behavior of stabilized n-si/tio2/ni photoanodes for water oxidation
M. T. McDowell, M. F. Lichterman, A. I. Carim, R. Liu, S. Hu, B. S. Brunschwig, N. S. Lewis, ACS Applied Materials & Interfaces, 7, 15189 – 15199 (2015).
24 A sensitivity analysis to assess the relative importance of improvements in electrocatalysts, light absorbers, and system geometry on the efficiency of solar-fuels generators
Y. Chen, S. Hu, C. X. Xiang, N. S. Lewis, Energy & Environmental Science, 8, 876 – 886 (2015).
23 Stabilization of si  microwire arrays for solar-driven h2o oxidation to o2(g) in 1.0 m koh(aq) using conformal coatings of amorphous tio2
M. R. Shaner, S. Hu, K. Sun, N. S. Lewis, Energy & Environmental Science, 8, 203 – 207 (2015).
22 Stable solar-driven water oxidation to o2(g) by ni-oxide coated silicon photoanodes
K. Sun, M. T. McDowell, A. C. Nielander, S. Hu, M. R. Shaner, F. Yang, B. S. Brunschwig, N. S. Lewis, J. Phys. Chem. Lett., 6, 592 – 598 (2015).
21 Stabilization of n-cadmium telluride photoanodes for water oxidation to o2(g) in aqueous alkaline electrolytes using amorphous tio2 films formed by atomic-layer deposition
M. F. Lichterman, A. I. Carim, M. T. McDowell, S. Hu, H. B. Gray, B. S. Brunschwig, N. S. Lewis, Energy & Environmental Science, 7, 3334 – 3337 (2014).
20 Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin tio2/ni coatings
M. T. McDowell, M. F. Lichterman, J. M. Spurgeon, S. Hu, I. D. Sharp, B. S. Brunschwig, N. S. Lewis, J. Phys. Chem. C, 118, 19618 – 19624 (2014).
19 Amorphous tio2 coatings stabilize si, gaas and gap photoanodes for efficient water oxidation
S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, N. S. Lewis, Science, 344, 1005 – 1009 (2014).
18 Modeling the performance of an integrated photoelectrolysis system with 10 × solar concentrators
Y. -K. Chen, C. -X. Xiang, S. Hu, and N. S. Lewis, J. Electrochem. Soc, 10, F1101 – F1110 (2014).
17 Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes
S. Hu, C.-Y. Chi, K. Fountaine, M. Q. Yao, H. A. Atwater, P. D. Dapkus, N. S. Lewis, and C. Zhou, Energy & Environmental Science, 6 (6), 1879 – 1890 (2013).
16 Twin-free gaas nanosheets by selective area growth: implications for defect-free nanostructures
C.-Y. Chi, T.-W. Yeh, S. Hu, and P. D. Dapkus, Nano Letters, 13 (6), 2506 – 2515 (2013).
15 An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting system
S. Hu, C. X. Xiang, S. Haussener, A. Berger, and N. S. Lewis, Energy & Environmental Science, 6 (10), 2984 – 2993 (2013).
14 Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems
S. Haussener, S. Hu, C. X. Xiang, A. Z. Weber, and N. S. Lewis, Energy & Environmental Science, 6 (12), 3605 – 3618 (2013).
13 Undoped ge core-si(ge) shell nanowires: synthesis, local composition and strain characterization
S. Hu, I. A. Goldthorpe, A. F. Marshall, and P. C. McIntyre, ECS Transactions, 50 (9), 635 – 643 (2013)
12 Thermal stability and surface passivation of ge nanowires coated by epitaxial sige shells
S. Hu, Y. Kawamura, K. C.-Y. Huang, Y. Li, A. F. Marshall, K. M. Itoh, M. L. Brongersma, and P. C. McIntyre, Nano Letters, 12 (3), 1385-1391 (2012).
11 Directed synthesis of germanium oxide nanowires by vapor–liquid–solid oxidation
M. Gunji, S. V. Thombare, S. Hu, and P. C. McIntyre, Nanotechnology, 23 (38), 385603 (2012).
10 Direct-gap photoluminescence from germanium nanowires
Y. Kawamura, K. C.-Y. Huang, S. V. Thombare, S. Hu, M. Gunji, T. Ishikawa, M. L. Brongersma, K. M. Itoh, and P. C. McIntyre, Physics Review B, 86, 035306 (2012).
9 Design and growth of iii-v nanowire solar cell arrays on low cost substrates
S. Hu, A. Gu, Y. Huo, S. Thombare, E. Pickett, J. Yan, T. Sarmiento, D. Liang, S. Li, A. Lin, Z. Yu, M. Riazia, S. Fan, P. C. McIntyre, and J. Harris, Proceedings of the 35th IEEE Photovoltaic Specialists Conference, 002034-7 (2010).
8 Faceting and disorder in nanowire solar cell arrays
E. Pickett, A. Gu, Y. Huo, E. Garnett, S. Hu, T. Sarmiento, S. Thombare, D. Liang, S. Li, Y. Cui, M. McGehee, P. C. McIntyre, and J. Harris, Proceedings of the 35th IEEE Photovoltaic Specialists Conference, 001848-53 (2010).
7 Nucleation and growth kinetics of germanium islands during layer exchange metal-induced crystallization
S. Hu and P. C. McIntyre, Journal of Applied Physics, 111, 044908 (2012).
6 Interface-controlled low-temperature metal-induced crystallization of germanium films on amorphous substrates
S. Hu, A. F. Marshall, and P. C. McIntyre, Applied Physics Letters, 97, 082104 (2010).
5 Group iv semiconductor nanowire arrays: epitaxy in different contexts
P. C. McIntyre, H. Adhikari, I. A. Goldthorpe, S. Hu, P. Leu, A. F. Marshall, and C.E.D. Chidsey, Semiconductor Science and Technology, 25, 024016 (2010).
4 Single-crystal germanium layers grown on silicon by nanowire seeding
S. Hu, P. W. Leu, A. F. Marshall, and P. C. McIntyre, Nature Nanotechnology, 4, 649-653 (2009).
3 An energy stabilizing system for electron energy-loss spectrometers in transmission electron microscopy
Z. Wang, S. Hu, C. Xu, D. McMullan, and J. Yuan, Physics Procedia, 1, p.521-527(2008).
2 A hybrid electron energy loss spectrometer with simultaneous serial and parallel detection
J. Yuan, Z.W. Wang, S. Hu, and L. Xie, 14th European Microscopy Congress, 1, 67-68 (2008).
1 An energy stabilized post-column electron energy-loss spectrometer for transmission electron microscopy
Z. Wang, S. Hu, C. Xu, D. McMullan, and J. Yuan, Journal of Physics: Conference Series, 126, 012094 (2008).